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Analysis
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and Modeling of” Two-Gap”
Line Rectangular Waveguide
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Abstract —The analysis of “two-gap” coaxial line rectananlar wavemride.
junctions is discussed; The cross-~&pled junction, and the ‘coax-gap’

mount are specifically considered. The theoretical expressions obtained

yield results in excellent agreement with published experimental results.

Equivalent circuits are presented for the two junctions applicable to the

case where the TE lo mode is the only propagating wavegnide mode.

-1. INTRODUCTION

c ROSS-COUPLED coaxial line rectangular waveguide

junctions (such as that shown in Fig. 1) have, over the

years, been used in a wide variety of microwave devices. In

the early days, they were used as a means of interconnect-

ing coaxial line and rectangular waveguide, the junction

being matched by the appropriate location of short circuits

in one of the waveguide arms and one of the coaxial lines.

More recently, cross-coupled junctions have been used in

IMPATT diode circuits, the active device being positioned

in one of the coaxial lines, a resistive load (for stability

purposes) terminating the other coaxial line, with a varia-

ble position short circuit in one of the waveguide arms

providing a tuning adjustment. Many power combiners use

such an arrangement as a basic module.

In the design of any of these devices, the microwave

engineer needs to be able to calculate, with reasonable

accuracy and usually over a significant frequency range,

the input impedance at one port (of the four-port cross-

coupled junction) for various load conditions in the other

ports. To date, most design has been based on empirical

knowledge, there having been relatively little research or

analysis of such junctions reported in the literature. Only

Lewin [1] and Eisenhart [2] have presented expressions, or

outlined methods, by which impedance calculations could

be made.

Lewin’s analysis, which considers the junction viewed

from one of the waveguide ports with the other ports

perfectly matched, is based on the representation of the

junction as a post with two delta function loads, located at

the top and bottom of the post, the loads being of the same

impedance as the characteristic impedance of the respective

coaxial lines in the problem of interest. Because of the

delta function load representation employed the impedance
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Fig. 1. A sectionrd view of the cross-coupled coaxial line rectangular
waveguide Junction.

result contains a divergent series. The result may be ren-

dered finite [1], [3], but there remains the difficulty of

taking into account the dimensions of the coaxial aperture

of the practical problem. While reasonable results may be

obtained in some cases without taking account of this

aspect, as would appear to be so in the cases considered in

[4, figs. 4 and 5] this would not be true for all cases. The

input impedance at the coaxial port is known to be signifi-

cantly affected by the dimensions of the coaxial aper-

ture—as can be seen in [5, figs. 4 and 5].

Recognizing that the coaxial aperture dimensions have

significant effect, Eisenhart and coauthors [5] proposed

that the coaxial aperture be modeled as a finite gap (which

they termed the equivalent gap), the width being a function

of the dimensions of the problem, This equivalent gap was

determined for C-band and X-band waveguide situations

by the comparison of experimental results for the imped-

ance of junctions of various dimensions, and theoretical

results relating to the gap-excited post obtained from the

analysis in [6]. The difficulty about this approach, in the

general case, is the need to determine the equivalent gap

which requires an extensive set of measurements.

Eisenhart obtained results for cross-coupled junctions [2]

using this equivalent gap concept and his model of the

two-gap waveguide mount which was deduced from his

earlier analysis of the single-gap mount which is in turn

based on representing the round post as an equivalent flat

strip [6].
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Fig. 2. A sectional view of the two-gap “coax-gap” mounting structure.

Thus, both the Lewin and Eisenhart formulations of the

cross-coupled junction problem are indirect solutions of

the practical problem.

There are of course other “two-gap” coaxial line rectan-

gular waveguide junctions used in microwave circuits, and

therefore of interest. One such junction is the “coax-gap”

mounting structure shown in Fig. 2.

To date, only Eisenhart [2] has specifically considered

this problem. His approach is identical to the one he

adopted for the cross-coupled junction, that is, the use of

his two-gap mount analysis and the representation of the

coaxial source as an equivalent gap. Thus, as for the

cross-coupled junction, we have an indirect solution of

the practical problem.

This author’s approach to the solution of the two “two-

gap” coaxial junction problems discussed above is some-

what different. It involves the use of a two-port network

approach and the formulations for two related problems,

namely the single-coax entry junction and the single-gap

mounting structure.

Because of the source models used and the method of

solution, these formulations do not require the use of

equivalence or correction factors. Consequently, the theo-

retical expressions may be used to obtain results for any

particular (general) situation without having to first obtain,

experimentally or otherwise, any additional information.

The solutions for the “two-gap” problems, of course, in-

herit these characteristics.

In this paper it is shown how a two-port network ap-
proach may be adopted for the solution of the cross-

coupled junction (Fig. 1) and the “coax-gap” mounting

structure (Fig. 2), and the relevant equations are presented.

Comparison of theoretical and experimental results show

the theory to be very accurate.

II. ANALYSIS OF “Two-GAP” JUNCTION PROBLEMS

“Two-gap” junctions, such as those shown in Figs. 1 and

2, may be analyzed as two-port network problems repre-

sented by the pair of equations

1,= Y,kv, + Y12V2

12= Y2,V~ + Y22V2. (1)

In a particular case, one must first define 1 and V

appropriately, and having done so, the solution of the

problem reduces to finding the Y1,, Y,z, Yzl, and Y2Z.

These may be obtained from the analysis of selected

‘single-gap’ problems. Of course, by reciprocity y Y12 = Y21.

Having found Y,,, Y21, and Y22, (1) can then be used to

consider any case of interest. For example, the input

admittance at port 1, Y,, when port 2 is loaded with an

impedance Z=z, can be shown to be

Y,2Y2,
Y1= Y]l – ZL2 1 + zL2y22 “ (2)

In all cases, admittances and impedances are related to

the aperture plane corresponding to the port in question.

In the problems considered in this paper, it is assumed

that the waveguide and coaxial line(s) are perfectly con-

ducting, and that only the TEM mode can propagate in the

coaxial line(s) at the frequency of interest.

The analyses presented here are applicable to the case

where the waveguide (assumed air-dielectric) is perfectly

matched at both waveguide ports. The analyses can be

used however, to deduce general equivalent circuits for the

various problems considered. These equivalent circuits

inter-relate the four ports of the problem (i.e., the two

waveguide ports plus the two ‘gap’ ports), and are there-

fore useful for considering the junctions in a variety of

loading situations. In this paper, equivalent circuits are

presented for cases where the TEIO mode is the only

propagating waveguide mode.

III. THE CROSS-COUPLED JUNCTION

Consider now the cross-coupled junction shown in Fig.

1, with ports 1 and 2 as shown.

The input admittance of the junction at either of the

coaxial ports is given by an expression of the form [8]

. JiqxrtureHO
Y= 2T

In ( b/a ) (aperture E,

where the integrals of the f3-component of the magnetic

field (H@) and the radial component of the electric field

(E,) are over the coaxial aperture of the coaxial port at

which the admittance is to be determined. Consistent with

this admittance expression, I and V are taken to be

(evaluated in respect to the appropriate aperture)

I=
2T

Jin ( b/a ) aperture
Ho, v.

J
E,.

aperture

Now if port 2 is short-circuited ( V2 = O), the input ad-

mittance at port 1 (i.e., 11/ V,) is simply Y,, and given by

the result derived in [7], [8] for the single coax entry

junction, namely (time dependence assumed eJ”’)

Y,, =
2 vj

( )
g cm l);’+ ln(b/a) (~)

qOkhln2(b/a) ~=o q;

where j = ~, k = 2 n/ A, TOis the intrinsic impedance of
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where

/( )
2

qm. ~ .1

S*(tj~ka, ~~kd, e/d) = Hf2)(if~ka)+ Jo(%ka)

S(q~ka, q~kd, e/d) = %(q~ka)+~o(q~ka)

- ~ Ko(21rz+e/dlq~kd)
~.—~ )

and lo, Yo,lO, Ko, and H~2Jare Bessel functions of the first

and second kind, modified Bessel functions of the first and

second kind, and Hankel functions of the second kind,

respectively. (Note: The use of m in the above expressions

has been chosen to be consistent with earlier publications

of the author and others who have used similar methods

for deriving such results. With the subsequent use of n, the

nomenclature for the waveguide modes is thus TE~~ and

TM,., where n relates to the field variation in the broad

dimension of the waveguide, and m relates to that in the

narrow dimension.)

Equation (3) may be rewritten as [8]

2~j
Yll = – ~okhln2(b/a)

“( }khln(b/a)cot(kh) –D~’ –2 ~ D~l . (4)
~=1

The analysis of [8] may also be used to deduce the

expression for Y21, namely

Y*, =
2~j

{
f ,m (-#@/~) +D2,

qokhln2(b/a) ~=.
m

q: }

where

D;l=(–l)mD; ,

Y21 may be rewritten as

2~j
Y,, = - ~okkln2(b/a)

“{ )
ln(b/a). kh/sin(kh)– D~l –2 ~ D;’ . (5)

~=1

Because the two coaxial lines have the same dimensions,

it follows that Y22= Y,,.

(Note: Details of the numerical evaluation of the various

expressions are given in [8]–[ 10]. [9] and [10] may be

obtained from the author.)

A. Comparison of Theoretical and Experimental Results for

the Cross - Coupled Junction

As an illustration of the accuracy of the theoretical

analysis, a comparison of theoretical and experimental

results is given in Fig. 3 for the cross-coupled junction

considered by Eisenhart [2]. In particular, results for the

input impedance are shown for the situation: a = 011525

cm, b = 0.35 cm, e/d = 0.5, h = 1.016 cm, d = 2.286 cm for

three different loads at port 2, namely 50 Q, and short

circuits 5 mm and 12 mm from the plane of the aperture of

port 2. (The theoretical results were obtained directly from

(2), (4), and (5) using the computer program listed in [10],

while the experimental results are those of Eisenhart [2].)

Clearly the agreement between theoretical and experimen-

tal results over the entire 7– 16-GHz range is excellent. (It

is interesting to compare Fig. 3, with [2, fig. 10] and [4, figs.

4 and 5]. The computational effort in the three different

methods would be comparable.)

B. Equivalent Circuit

An equivalent circuit for the cross-coupled junction can

be found by an analysis similar to that given in the

Appendix. For the situation where the TEIO mode is the

only propagating mode in the waveguide (a case of com-

mon interest,) the equivalent circuit is that shown in Fig. 4,

where the susceptances B., B~, and B= are given by

Ba=B; l–B;l, BC=B;2– B;l
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Fig. 3. A comparison of theoretical and expenmentaf results for the
Impedance at one coax port of the cross-coupled junction when the
other coax port is terminated in a 50-0 load, and short circuits at 5 mm
and 12 mm, respectively, and the waveguide ports are matched, for the
case a = 0.1525 cm, b = 0.35 cm, h = 1.016 cm, d = 2.286 cm, and

e/d = 0.5.—Theoretical results.. .Experimental results.

and

772 Jo(kb)
Bb = ‘~1 – ~okfiln2(b/a) Jo(ku)

.( JO(kb)Yo(ka)-Jo( ka)Yo(kb))

where

277
B;l = %2 = – ~okhln2(b/a)

“{ln(b/a)khcot(kh)–2 ~ D:
m=l )

and

277

{
ln(b/a)kh/sin(kh )–2 S D~l

)
’21 = – ~okhln2(b/a)

~=1

and R is given by

R= (2/n) ln(b/a)Jo(ka)sin( ~e/d)

Jo(ka)Yo(kb)– Jo(kb)Yo(ka) “

waveguide

port

.ajo

coax j Bc
j XA

port 2
waveguide

jBb
port

coax
port 1

jBa

R:l

Fig. 4. The equiwdent circuit of the cross-coupled Junction for the case
where the TE,0 mode is the only propagating waveguide mode.
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Fig. 5, A comparison of theoretical and experimental results for the

input Impedance at one coax port of the cross-coupled Junction when
the other coax port is terminated in 50 0, with one waveguide port
matched and the other short circuited at distances 1.4 cm and 2.0 cm,
respectively, for the case a = 0.1525 cm, b = 0.350 cm, h = 1.016 cm,
d = 2.286 cm, and e/d= 0.5.—Theoretlcal results. ~ Experimental
results.

C. Cross-Coupled Junction With A Short Circuit in One

Waveguide Arm

The junction shown in Fig. 1 is often used in a situation

where there is a short circuit in one of the waveguide arms,
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say a distance u from the center of the coaxial junction.

Results for this situation can be obtained from the

equivalent circuit given in Fig. 4, provided the frequency is

such that only the TE,0 mode can propagate in the wave-

guide. (An alternative approach, applicable over a wider

frequency range, is given in [10].)

The equivalent circuit has been used to calculate theoret-

ical results for the input impedance at one of the coax

ports of the cross-coupled junction for the following case:

a = 0.1525 cm, b= 0.350 cm, e/d= O.5, h = 1.016 cm, d=
2.286 cm, a 50-0 load at the second coax port, for the two

situations u = 1.40 cm and u = 2 cm. These theoretical

results are shown in Fig. 5 together with experimental

results obtained by Eisenhart [private communication].

Clearly the agreement between theory and experiment is

most satisfactory.

IV. THE ‘COAX-GAP’ MOUNTING STRUCTURE

The ‘coax-gap’ mounting structure shown in Fig. 2 can

be analyzed in a similar way using the basic approach

outlined in Section II.

Admittance calculations at the coaxial port have already

been discussed. Thus, 11 and VI (where ports 1 and 2 are

defined in Fig. 2) are given by the expressions in Section

III.

The input admittance at the gap port is given by an

expression involving integrals of the tangential electric and

magnetic fields in the gap aperture, namely [ 11]–[13]

27ra j~.PHe

‘= – 2g j~aPEz “

Consequently, Iz and Vz are defined by expressions of

the form

~=-j E=
gap

and

where the integrals are taken over the aperture of the gap

at the surface of the post.

All that now remains is to determine YI,, Y21, and Yzz.

YI, is the input admittance of a single coax entry junc-

tion and is given by (4), while Y2Z (i.e., the input admit-

tance of a single gap mounting structure) is given by

[11]-[13]

(2TJ D;2 -t-2 ~ D;2(fl~)2Y22 = S
}

(6)
m=l,

and

Y21 may be evaluated from the results in [8] and shown to

be

2rj

’21 = qOkhln (b/a) {
–cos[kh(l –z,/h)]. &.*

where

(
—

+

JO(ij~kb)

Jo(%ka)

.Jo(%kb)Yo(%ka) -JO(%zka)Yo 1%@) -2

Jo(%~~)~*(%@> gmkd, e/d) ‘qm’
D;l =

1[

Io(qmkb)

Io(qmka)

mw
-<1

_ ~o(q~kb)~o(q~ka)–~o(q~k~)~o(qmkb)
~o(%ka)~(%ku+ %nkd,e/d) 1

/(l:*

fl>l.
kh

Details of the numerical evaluation of the various results

have been given elsewhere [8]-[10], [12], [13].

This analysis may be used to deduce an equivalent

circuit for the mount as outlined in the Appendix.

A. Comparison of Theoretical and Experimental Results

In order to demonstrate the application of the theory

presented here, impedance calculations have been made

(using (2), (4), (6), and (7)) for the mount considered by

Eisenhart [2, fig. 9]. In particular, the calculations have

been made for the case a = 0.152 cm, b = 0.356 cm, h =

1.016 cm, d = 2.286 cm, e/d= 0.5, z,= 0.696 cm, and

g = 0.0889 cm with the load in the gap being a varactor,

taken to be represented by the model shown inset in Fig. 6

with L. = 0.45 nH, Cp = 0.2 pF, and R, = 0.95 G. The re-

sults of these calculations are shown in Fig. 6 for two cases

corresponding to varactor bias voltages of OV (CJ(O ~ = 1.9
pF) and – 30 V ‘(C, ( – 30 V)= 0.45 pF). Also shown in Fig.

6 are Eisenhart’s experimental results.

where

JJm —

1( 1 _qmkak@

~o(~mka)~(qmka,~mkd>e/d) ~o(q~ka) }
/%?l> ~>1
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Fig. 6. Theoretical and experimental results for the input impedance at
the coax port of the mount shown in Fig. 5 for the varactor gap load
case described in the text. —Theoretical results.. . .Experimental re-
sults.

Clearly, the agreement between the experimental results

and the theoretical results is very good.

V. CONCLUSION

The analysis of” two-gap” coaxial line rectangular wave-

guide junctions has been discussed.

The cross-coupled junction and the “coax-gap” mount-

ing structure have been specifically considered. It has been

shown that results computed directly from the theoretical

expressions are in excellent agreement with experimental

measurements.

Equivalent circuits have also been presented for the two

junctions, applicable to the case where the TEIO is the only

propagating waveguide mode.

APPENDIX

The admittance expressions presented in this paper can

be used to derive equivalent circuits for the two junctions

considered. Equivalent circuits are useful for considering

situations in which the waveguide ports are mismatched,

rather than the matched case to which the theory presented

earlier in this paper relates.

In this Appendix, the equivalent circuit is deduced for

the junction shown in Fig. 2 for the case where the

frequency is such that the TE,0 mode is the only propagat-

ing waveguide mode.
The equivalent circuit may be obtained by first repre-

senting (1) in the form of a T-network interconnecting the

two ports, as shown in Fig. 7, and then rewriting Y,,, Yz~,

EIE!l
gap

Y22– Y21
port

Y21

coax
Y1,-Y21

port

Fig. 7, ~-equivalent circuit representation of (l).

and Yzz isolating the term relating to the TE,0 mode.

Considering Y21, for example, one can write

4J0 ( ka)
’21 = ~OkhS*(ka, kd, e/d)

[ 1. JO(ka)YO(kh)– JO(kb)YO(ka) 1

(2/~) ln(b/a)JO(ka)
. — + Y:, (8)

JO(ka)

where

2rj

{
–cos[kh(l–z,/h)]

‘;l = qOkhln(b/a)

Jo(kb)

}

.&ti-2~D;’~.+~ .
sin kh kg ~=1 o

If the TEIO mode is the only propagating waveguide

mode S*(ka, kd, e/d) may be rewritten as [8]

S*(ka, kd, e/d) =
8sin2(ne/d)Jo(ka) 1

klod ()
~+jx (9)

where

k10d=~(kd)2–m2,

r 1

“1 ——1“& :‘2s’n2y
[–

+ In Ckd sin ~ _

’77 d 1
and C =1.78107. ---

From (8) and (9), we can rewrite

Y2, =
1 1

— + Y;l
ZW(~+ jx) “ RIRz

where

2kh—.
Z.= klod ~01

R = (2/n) ln(b/a)Jo(ka)sin( re/d)
1 Jo(ka)Yo(kb)– Jo(kb)Yo(ka)

and

R2=Jo(ka)sin~.

(lo)
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jX
R2:1

z.

i H( ~

gap
port JBC z.

jBb

coax
port j B.

RI :1

Fig. 8. Equivalent circuit with TEIO mode terms Isolated.

-jXB -jXB

o
II II

Bw o

j XA

waveguicfe R2:I

port

.R(o

gap
waveguide

port
j BC port

jBb

coax
port

jBa

Rl:l

Fig. 9. Equivalent circuit for the mount shown in Fig. 5 for the case
where tlie TEIO mode is the only propagating waveguide mode.

In a similar manner, one can show

Yl, = 1 J+Y(,
Zw(++ jx) R;

and

Y22 = 1 .~+Y;2
Zw(++jx) R22

(11)

(12)

where

2~j (ln(b/a). khcotkh-2 ~ D:Y;l = – ~Okhln2(b/a) “
~=1

‘. WIJO(ka)Yo(kb)- JO(kb)YO(ka)]
– z Jo(ka) }

and

Y;2 - 2T.j
{

_ka.li(ka)

,1
—+2 ~ D;2(&)2 .

qokh JO(ka) ~=1

For the case being considered here, namely where the

TE,0 mode is the only propagating waveguide mode, Y{l,

Y~2, and Yjl, are purely susceptive.
Note the common term ZW(~ + jx) in (10), (11), and

(12). The jZW term arises because the two waveguide ports

(assumed matched in the analysis) are being fed in parallel

by the mount, while the jxZW( = jX) term corresponds to

the post reactance (cf., [14]).

Having recognized that the ~ZW term is related to the

TE,0 (propagating) mode, we can now isolate the wave-

guide ports from the circuit of Fig. 7 (using (10)-(12)) and

obtain the equivalent circuit, shown in Fig. 8 where the

susceptances B., Bb, and B. are given by

jBa = Y{l – Y~l

jB~ = Y~l

jBc = Y~2– Y~l.

Because the circuit was deduced from an analysis which

had the two waveguide ports loaded identically (in fact,

perfectly matched), the’ post-thickness’ reactance ( XB) term

is included in the X term. It is a simple matter to extract

the X~ term, and obtain the equivalent circuit for the

junction shown in Fig. 9, where

1

‘A= X+TXB

and [14]

XB = 2r. k10d. (a/d )2sin2(ne/d)-ZW.

ACKNOWLEDGMENT

Part of the work reported here was undertaken while the

author was on leave at the Department of Electronic and

Electrical Engineering, University of Birmingham, Eng-

land, The author would like to thank the Head of the

Department there for making the facilities available, the

Royal Society for the award of a Royal Society and Nuffield

Foundation Commonwealth Bursary, and his own univer-

sity, the University of Auckland, New Zealand, for grant-

ing him research and study leave.

The author would also like to thank Dr. R. L. Eisenhart

for making his experimental results available, and for

subsequent correspondences.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[lo]

[11]

REFERENCES

L. Lewin, “A contribution to the theory of probes in waveguide,”
Proc, Irrsr. Elec. Eng., vol. 105C, pp. 109-116, 1958. Also, IEE

Monograph 259R, 1957.

R. L. Eisenhart, “Discussion of a 2-gap waveguide mount,” IEEE
Trans. Mlcrowaoe Theory Tech., vol. MTT-24, pp. 987–990, 1976.
L. Lewm, Theory of Waveguides. London: Newnes-Butterworth,
1975.
K. Chang and R. L. Ebert, “ W-band power combiner;’ IEEE Trans
Mzcrowaoe Theory Tech., vol. MTT-28, pp. 295–305, 1980.
R. L, Eisenhart, P. T. Greiling, L. K. Roberts, and R. S. Robertson,
“A useful equivalence for a coaxial-waveguide junction; IEEE
Trans Mtcrowave Theo~ Tech., vol. MTT-26, pp. 172-174, 1978.
R. L. Eisenhart and P. J. Khan, “Theoretical and experimental
analysis of a waveguide mounting structure,” IEEE Trans. Micro-

waoe Theory Tech., vol. MIT-19, pp. 706–719, 1971.
A. G. Williamson and D. V. Otto, “Cylindrical antenna in a
rectangular waveguide driven from a coaxial line,” Elecrron. Lert.,
vol. 8, pp. 545–547, 1972.

A. G. Williamson, “Analysis and modelting of a coaxial line rectan-
gular waveguide Junction,” Proc. Inst. Elec. Eng., vol. 129, part H,
pp. 271–277, 1982.
A. G. Williamson, “Anafysis of a coaxiaf line-rectangular waveguide
pnction~’ Univ. of Auckland, School of Eng. Rep. 236, 1980.
A. G, Williamson, “Analysis of various coaxial line-rectangular
waveguide junctions including double coax entry and~or waveguide
short circuit cases,” Univ. of Auckland, School of Eng. Rep. 240,

1980.
A. G. Williamson and D. V. Otto, “Analysis of a waveguide



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 3, MARCH 1983302

[12]

[13]

[14]

mounting structure,” Proc. IREE (A w-t.), 1973, vol. 34, pp. 95-97,

1973.

A. G. Williamson, “Analysis and modelling of a single post wave-

guide mounting structure: Proc. Inst. Elec, Eng., vol. 129, part H,
pp. 271-277, 1982.
A. G. Williamson, “Anafysis and modelling of single post, wave-
guide post mounting structures,” Univ. of Auckland, School of Eng.
Rep. 250, 1981.
N. Marcuvitz, Ed., Waoeguide Handbook (MIT Radiaticn Labora-
tory Series, vol 10). New York: McGraw-Hill, 1951, pp. 257–258.

*

A. G. Williamson (M78) was born in Auckland, New Zealand, in 1948.

He received the B.E. degree with First Class Honours, and the Ph.D.
degree, both in electncaJ engineering, from the University of Auckland, in
1970 and 1977, respectively. In 1970 he began a Masters degree program

Short Papers

Optimization of an Electrodynamics Basis for Determination

of the Resonant Frequencies of Microwave Cavities

Partially Filled with a Dielectric
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Abstract —In this paper, a method of optimization of an electrcsdymuoic

basis is presented for determination of resonant frequencies of the micro-

wave cavities containing dielectric samples. It is shown that the use of the

suitable basis, consisting of severaf functions only, ensnres a high accuracy

of cafcnlation of these frequencies.

The presented method is nsefuf for solving the boundary problem for the

elliptic partial differential equation if the considered region has a regular

boundary and is filled with iohomogeneous medium.

I. THEORY

It is often necessary in practice to determine frequencies of the

microwave resonant cavity in relation to the perrnittivity of the

sample which fills this cavity. As it is known, this problem can be

reduced to determination of the eigenvalues of the following

boundary problem:

{

L+= jm&f+
(1)

ZX2=Oon S

where

t, is the relative complex permittivity inside the cavity, ~, fi are
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the electric and magnetic fields inside the cavity, and S is the
surface of the cavity.

Eigenvalues o of this problem carI be accurately calculated if
the sample fills completely two of the cavity dimensions. In other
cases, approximation methods must be used. In the most accurate
of them the electromagnetic field is expanded into a series

(2)
i

where {aj} is the set of coefficients to be determined and {+i} is

the set of basis functions (the electrodynamics basis). If the

electrodynamics basis is given, the well-known methods (e.g., the

Rayleigh-Ritz or the Galerkin methods [1], [2]) are employed to

calculate eigenvalues a and eigenvectors {a,}. The main problem

is how to find the best electrodynamics basis. Usually the basis

contains functions which are solutions of the boundary problem

(1) for the empty cavity. In this paper, the basis is formed by
functions which are solutions of the boundary problem (1) for the

cavity partially filled with a dielectric in a suitable manner. The

dielectric fills completely two cavity dimensions. The cavity with

such a filling is called the basis cavity.

The nature of such modification can be explained as follows.

We want to achieve the best similm-ity of distributions of electro-

magnetic fields in the basis cavity (Fig. 1(b)) and in the cavity

which fields we are looking for (Fig. 1(a)). In this particular case,

shown in Fig. 1(b), we can achieve that by changing c~ and (or)
the radius r~.

Similar modification of au electrodynarnic basis was presented

for the first time in [4] for the rectangular cavity with a rectangu-

lar dielectric sample where the authors assumed that Cb= Re ( <,)

= const. In this paper, generalizations are made by assuming any

c ~ value and by optimization of the choice of particular basis
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