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Analysis and Modeling of T wo-Gap”
Coaxial Line Rectangular Waveguide
Junctions

A. G. WILLIAMSON, MEMBER IEEE

Abstract —The analysis of “two-gap” coaxial line rectangular waveguide
junctions is discussed. The cross-coupled junction, and the ‘coax-gap’
mount are specifically considered. The theoretical expressions obtained
yield results in excellent agreement with published experimental results.

Equivalent circnits are presented for the two junctions applicable to the
case where the TE |, mode is the only propagating waveguide mode.

1. INTRODUCTION

ROSS-COUPLED coaxial line rectangular waveguide

junctions (such as that shown in Fig. 1) have, over the
years, been used in a wide variety of microwave devices. In
the early days, they were used as a means of interconnect-
ing coaxial line and rectangular waveguide, the junction
being matched by the appropriate location of short circuits
in one of the waveguide arms and one of the coaxial lines.

More recently, cross-coupled junctions have been used in
IMPATT diode circuits, the active device being positioned
in one of the coaxial lines, a resistive load (for stability
purposes) terminating the other coaxial line, with a varia-
ble position short circuit in one of the waveguide arms
providing a tuning adjustment. Many power combiners use
such an arrangement as a basic module.

In the design of any of these devices, the microwave
engineer needs to be able to calculate, with reasonable
accuracy and usually over a significant frequency range,
the input impedance at one port (of the four-port cross-
coupled junction) for various load conditions in the other
ports. To date, most design has been based on empirical
knowledge, there having been relatively little research or
analysis of such junctions reported in the literature. Only
Lewin [1] and Eisenhart [2] have presented expressions, or
outlined methods, by which impedance calculations could
be made.

Lewin’s analysis, which considers the junction viewed
from one of the waveguide ports with the other ports
perfectly matched, is based on the representation of the
junction as a post with two delta function loads, located at
the top and bottom of the post, the loads being of the same
impedance as the characteristic impedance of the respective
coaxial lines in the problem of interest. Because of the
delta function load representation employed the impedance
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Fig. 1. A sectional view of the cross-coupled coaxial line rectangular

waveguide junction.

result contains a divergent series. The result may be ren-
dered finite [1], [3], but there remains the difficulty of
taking into account the dimensions of the coaxial aperture
of the practical problem. While reasonable results may be
obtained in some cases without taking account of this
aspect, as would appear to be so in the cases considered in
[4, figs. 4 and 5] this would not be true for all cases. The
input impedance at the coaxial port is known to be signifi-
cantly affected by the dimensions of the coaxial aper-
ture—as can be seen in [5, figs. 4 and 5].

Recognizing that the coaxial aperture dimensions have
significant effect, Eisenhart and coauthors [5] proposed
that the coaxial aperture be modeled as a finite gap (which
they termed the equivalent gap), the width being a function
of the dimensions of the problem. This equivalent gap was
determined for C-band and X-band waveguide situations
by the comparison of experimental results for the imped-
ance of junctions of various dimensions, and theoretical
results relating to the gap-excited post obtained from the
analysis in [6]. The difficulty about this approach, in the
general case, is the need to determine the equivalent gap
which requires an extensive set of measurements.

Eisenhart obtained results for cross-coupled junctions [2]
using this equivalent gap concept and his model of the
two-gap waveguide mount which was deduced from his
earlier analysis of the single-gap mount which is in turn
based on representing the round post as an equivalent flat
strip [6].
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Fig. 2. A sectional view of the two-gap “coax-gap” mounting structure.

Thus, both the Lewin and Eisenhart formulations of the
cross-coupled junction problem are indirect solutions of
the practical problem.

There are of course other “two-gap” coaxial line rectan-
gular waveguide junctions used in microwave circuits, and
therefore of interest. One such junction is the “coax-gap”
mounting structure shown in Fig. 2.

To date, only Eisenhart [2] has specifically considered
this problem. His approach is identical to the one he
adopted for the cross-coupled junction, that is, the use of
his two-gap mount analysis and the representation of the
coaxial source as an equivalent gap. Thus, as for the
cross-coupled junction, we have an indirect solution of
the practical problem.

This author’s approach to the solution of the two ““two-
gap” coaxial junction problems discussed above is some-
what different. It involves the use of a two-port network
approach and the formulations for two related problems,
namely the single-coax entry junction and the single-gap
mounting structure.

Because of the source models used and the method of
solution, these formulations do not require the use of
equivalence or correction factors. Consequently, the theo-
retical expressions may be used to obtain results for any
particular (general) situation without having to first obtain,
experimentally or otherwise, any additional information.
The solutions for the “two-gap” problems, of course, in-
herit these charactenstics.

In this paper it is shown how a two-port network ap-
proach may be adopted for the solution of the cross-
coupled junction (Fig. 1) and the “coax-gap” mounting
structure (Fig. 2), and the relevant equations are presented.
Comparison of theoretical and experimental results show
the theory to be very accurate.

II. ANALYSIS OF “Two-GAP” JUNCTION PROBLEMS

“Two-gap” junctions, such as those shown in Figs. 1 and
2, may be analyzed as two-port network problems repre-
sented by the pair of equations

L=V +T,,
L=YV, +Yul,.

(1)
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In a particular case, one must first define 7 and V
appropriately, and having done so, the solution of the
problem reduces to finding the Y, Yy;, ¥,;, and Y,,.
These may be obtained from the analysis of selected
‘single-gap’ problems. Of course, by reciprocity Y, =Y.

Having found Y},, Y;,, and Y,,, (1) can then be used to
consider any case of interest. For example, the input
admittance at port 1, ¥;, when port 2 is loaded with an
impedance Z;,, can be shown to be

Y12Y21

h=tu- 27y Z, Y,

(2)

In all cases, admittances and impedances are related to
the aperture plane corresponding to the port in question.

In the problems considered in this paper, it is assumed
that the waveguide and coaxial line(s) are perfectly con-
ducting, and that only the TEM mode can propagate in the
coaxial line(s) at the frequency of interest.

The analyses presented here are applicable to the case
where the waveguide (assumed air-dielectric) is perfectly
matched at both waveguide ports. The analyses can be
used however, to deduce general equivalent circuits for the
various problems considered. These equivalent circuits
inter-relate the four ports of the problem (ie., the two
waveguide ports plus the two ‘gap’ ports), and are there-
fore useful for considering the junctions in a variety of
loading situations. In this paper, equivalent circuits are
presented for cases where the TE,, mode is the only
propagating waveguide mode.

I11. THE CrROSS-COUPLED JUNCTION

Consider now the cross-coupled junction shown in Fig.
1, with ports 1 and 2 as shown.

The input admittance of the junction at either of the
coaxial ports is given by an expression of the form [8]

Y= 27 . f aperture H [/
hl ( b/a ) faperture Er

where the integrals of the #-component of the magnetic
field (H,) and the radial component of the electric field
(E,) are over the coaxial aperture of the coaxial port at
which the admittance is to be determined. Consistent with
this admittance expression, I and ¥V are taken to be
(evaluated in respect to the appropriate aperture)

27
I=——— Hy,, V= E.
ln(b/ a) ‘/;lperture b '/a;perture
Now if port 2 is short-circuited (V, = 0), the input ad-
mittance at port 1 (i.e,, I, /V,) is simply Y, and given by
the result derived in [7], [8] for the single coax entry
junction, namely (time dependence assumed e/“*)

2§ n ln_(i/“_)}
nokh1n*(b/a) m=o€m{Dm g ®)

m

Yll

where j=vV—1, k=27/\, n, is the intrinsic impedance of
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free space, and

297

T — — — _
_5[YO(qua)JO(qub)—YO(qub)JO(qua)]
| Jo(Gukb) | Jo(3kb)Yo(gmka)— Jy(g,ka) Yo (G,KD) |, mr
JO(qua) JO(qua)S*(qua> quda e/d) " kh
Dll=
m 1y(gnkb)
K,(q,kb)I,(q,ka)—K I,(q,kb)] | 22—
[ 0(‘1m b) O(qm a) o(qua) O(qm )] [Io(qua)
_ Io(qub)Ko(qua)_Io(qua)Ko(‘Imkb) 5 m>1
1y(q,,ka)S(q,.ka, q,kd,e/d) " kh
where
—\/—mW—Z—I where
In = ( kh ) B D21=(-1)'"D”.
_ 1_(Ln_"_’_)2 {1, m=0 Y,, may be rewritten as
Un = kh) ‘m‘{z, m>1 _ 27j
$*(qka, 3,kd, e /d) = HP (3,ika)+ Jo(3,.ka) Y mokhin’(b/a)

+ o0
L HP(ng,kd)
n=-—oo

=0

+ o0
- X Héz)(2|n+e/dltimkd)}

= —00

S(qua7 qud’ e/d) = KO(qua)+ IO(qua)

: { EO Ky (2lnlg,,kd)

n=-—00

=0

n=—00

+ 00
~ X Ko@n+ e/dlqud)}

and J,, Y, 1,, K, and H§? are Bessel functions of the first
and second kind, modified Bessel functions of the first and
second kind, and Hankel functions of the second kind,
respectively. ( Note: The use of m in the above expressions
has been chosen to be consistent with earlier publications
of the author and others who have used similar methods
for deriving such results. With the subsequent use of n, the
nomenclature for the waveguide modes is thus TE,,, and
TM,,,,, where n relates to the field variation in the broad
dimension of the waveguide, and m relates to that in the
narrow dimension.)
Equation (3) may be rewritten as [8]

2
nokh1n?(b/a)

11

[oe]
-{khln(b/a)cot(kh)—ug‘—z Y D,},‘}. (4)
m=1
The analysis of [8] may also be used to deduce the
expression for Y,;, namely

=_____2”j— 5 — ”‘M 21}
}31 'nokhlnz(b/a) Z Em{( 1) 2 +Dm

m=0 m

-{ln(b/a)-kh/sin(kh)—Dozl—2 ¥ D,gl}. 5)

m=1

Because the two coaxial lines have the same dimensions,
it follows that Y,, =7,.

( Note: Details of the numerical evaluation of the various
expressions are given in [8]-[10]. [9] and [10] may be
obtained from the author.)

A. Comparison of Theoretical and Experimental Results for
the Cross - Coupled Junction

As an illustration of the accuracy of the theoretical
analysis, a comparison of theoretical and experimental
results is given in Fig. 3 for the cross-coupled junction
considered by Eisenhart [2]. In particular, results for the
input impedance are shown for the situation: a=0:1525
cm, b=0.35 cm, e/d = 0.5, h =1.016 cm, d = 2.286 c¢m for
three different loads at port 2, namely 50 Q, and short
circuits 5 mm and 12 mm from the plane of the aperture of
port 2. (The theoretical results were obtained directly from
(2), (4), and (5) using the computer program listed in [10],
while the experimental results are those of Eisenhart [2].)
Clearly the agreement between theoretical and experimen-
tal results over the entire 7-16-GHz range is excellent. (It
is interesting to compare Fig. 3, with [2, fig. 10] and [4, figs.
4 and 5]. The computational effort in the three different
methods would be comparable.)

B. Egquivalent Circuit

An equivalent circuit for the cross-coupled junction can
be found by an analysis similar to that given in the
Appendix. For the situation where the TE,, mode is the
only propagating mode in the waveguide (a case of com-
mon interest,) the equivalent circuit is that shown in Fig. 4,
where the susceptances B,, B,, and B, are given by

B,=Bj,~ B}, B.=Bj,-Bj
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Fig. 3. A companison of theoretical and experimental results for the
mmpedance at one coax port of the cross-coupled junction when the
other coax port is terminated in a 50-© load, and short circuits at 5 mm
and 12 mm, respectively, and the waveguide ports are matched, for the
case a=0.1525 ¢cm, b=0.35 cm, h=1.016 ¢m, d =2.286 c¢m, and
e/d = 0.5.——Theoretical results. - - - - Experimental results.

and
7’ Jo(kb)
B, =B —
P okl (b/a) Jo(ka)
'(Jo(kb)Yo(ka)_Jo(ka)Yo(kb))
where
2a
Bj =By =———""—-—
TR g khIn?(b/a)
~{1n(b/a)khcot(kh)—2 5 D;:}
m=1
and
27 &,
B, =————"——{In(b/a)kh /sin(kh)—2 D”}
b= ey (/) sin(in) 2 5 3

and R is given by

_ (2/m)In(b/a)Jy(ka)sin(me/d)
T J(ka) Yy (kb)— Jo(kb) Y, (ka)
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Fig. 4. The equivalent circuit of the cross-coupled junction for the case
where the TE,, mode is the only propagating waveguide mode.
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Fig. 5. A comparison of theoretical and experimental results for the

input 1mpedance at one coax port of the cross-coupled junction when
the other coax port is terminated in 50 £, with one waveguide port
matched and the other short circuited at distances 1.4 cm and 2.0 cm,
respectively, for the case a = 0.1525 ¢m, b= 0.350 ¢cm, £ =1.016 cm,
d =12.286 cm, and e/d = 0.5.——Theoretical results.- - - - Experimental
results.

C. Cross-Coupled Junction With A Short Circuit in One
Waveguide Arm

The junction shown in Fig. 1 is often used in a situation
where there is a short circuit in one of the waveguide arms,
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say a distance u from the center of the coaxial junction.

Results for this situation can be obtained from the
equivalent circuit given in Fig. 4, provided the frequency is
such that only the TE,, mode can propagate in the wave-
guide. (An alternative approach, applicable over a wider
frequency range, is given in [10].)

The equivalent circuit has been used to calculate theoret-
ical results for the input impedance at one of the coax
ports of the cross-coupled junction for the following case:
a=0.1525 cm, b=0.350 cm, e/d = 0.5, h=1.016 cm, d =
2.286 cm, a 50- load at the second coax port, for the two
situations #=1.40 cm and u=2 cm. These theoretical
results are shown in Fig. 5 together with experimental
results obtained by Eisenhart [private communication].
Clearly the agreement between theory and experiment is
most satisfactory.

IV. THE ‘CoaXx-GAP’ MOUNTING STRUCTURE

The ‘coax-gap’ mounting structure shown in Fig. 2 can
be analyzed in a similar way using the basic approach
outlined in Section II.

Admittance calculations at the coaxial port have already
been discussed. Thus, I; and ¥V, (where ports 1 and 2 are
defined in Fig. 2) are given by the expressions in Section
ITL.

The input admittance at the gap port is given by an
expression involving integrals of the tangential electric and
magnetic fields in the gap aperture, namely [11]-{13].

_ 2ma ol
2g fgapEz .
Consequently, 7, and ¥V, are defined by expressions of
the form
V,=-1] E,
oo
and

2g

where the integrals are taken over the aperture of the gap
at the surface of the post.
All that now remains is to determine Y,,, Y,;, and Y.
Y,, is the input admittance of a single coax entry junc-
tion and is given by (4), while Y,, (i.e., the input admit-
tance of a single gap mounting structure) is given by
[113-{13]

27a
I - Ho
"% L

Yp= 207,’(’},{D32+2 ) D”(B )} (6)

=1,

where
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and
maz, S m/:T .
— S
By = cos h mmg
h

Y,, may be evaluated from the results in [8] and shown to
be

27j

- =" | _ _sinkg
Y, = nokhln(b/a){ cos[kh(1—z,/h)]

kg

sin kh

—pP-2 ¥ D,i‘ﬁm} 1)
m=1

where
[ Jo(@,kb)
JO(qua) .
JO(qub)YvO(qua)_JO(q-mka)YO(qub) -2
Jo(g,uka)S*(g,ka,g,kd,e/d) "
.r_n.z <1
D21= kh
[IO(qub)
IO(qua)
_ IO(qub)KO(qua)_IO(qua)KO(qub) / 2
I(q,uka)S(g,ka.q,kd,e/d) "
27 51
kh )

Details of the numerical evaluation of the various results
have been given elsewhere [8]-[10], [12], [13].

- This analysis may be used to deduce an equivalent
circuit for the mount as outlined in the Appendix.

A. Comparison of Theoretical and Experimental Results

In order to demonstrate the application of the theory
presented here, impedance calculations have been made
(using (2), (4), (6), and (7)) for the mount considered by
Eisenhart [2, fig. 9]. In particular, the calculations have
been made for the case a =0.152 cm, b=0.356 cm, h=
1.016 cm, d =2.286 cm, e/d =05, z,=0.696 cm, and
g = 0.0889 cm with the load in the gap being a varactor,
taken to be represented by the model shown inset in Fig. 6
with L, =0.45 nH, C,=0.2 pF, and R, =0.95 Q. The re-
sults of these calculations are shown in Fig. 6 for two cases
corresponding to varactor bias voltages of 0 V (C,(0 V) =1.9
pF) and' — 30 V(C,(— 30 V) = 0.45 pF). Also shown in Fig.
6 are Eisenhart’s experimental results. '

_{ 2j/m
D22 —

JO(@mka)S*(qua’ qud’ e/d)

m
1
{Io(qua)S(qua, gnkd,e/d)

_ Jl(qua)} L
“75(g,ka) kh
I.(q, ka) mm

— guka"2—=0 /g, > 1
qm aIO(qua) /qm’ kh
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Fig. 6. Theoretical and experimental results for the input impedance at
the coax port of the mount shown in Fig, 5 for the varactor gap load
case described in the text.——Theoretical results. - - - - Experimental re-
sults.

Clearly, the agreement between the experimental results
and the theoretical results is very good.

V. CONCLUSION

The analysis of “two-gap” coaxial line rectangular wave-
guide junctions has been discussed.

The cross-coupled junction and the “coax-gap” mount-
ing structure have been specifically considered. It has been
shown that results computed directly from the theoretical
expressions are in excellent agreement with experimental
measurements.

Equivalent circuits have also been presented for the two
junctions, applicable to the case where the TE,, is the only
propagating waveguide mode.

APPENDIX

The admittance expressions presented in this paper can
be used to derive equivalent circuits for the two junctions
considered. Equivalent circuits are useful for considering
situations in which the waveguide ports are mismatched,
rather than the matched case to which the theory presented
earlier in this paper relates.

In this Appendix, the equivalent circuit is deduced for
the junction shown in Fig. 2 for the case where the
frequency is such that the TE,; mode is the only propagat-
ing waveguide mode.

The equivalent circuit may be obtained by first repre-
senting (1) in the form of a 7-network interconnecting the
two ports, as shown in Fig. 7, and then rewriting Y,,, Y,,,
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Fig. 7. @-equivalent circuit representation of (1).

and Y, isolating the term relating to the TE,, mode.
Considering Y5,, for example, one can write

7= 4J,(ka)
20 g khS*(ka, kd,e/d)
'lJO(ka)YO(kb)—Jo(kb)YO(ka)]. 1
(2/7)In(b/a)Jy(ka) Jy(ka)

+ 75,

(8)

where

, 2mj

Y, = m{—COS[kh(l— z,/h)]

kh sinkg

. 21
snkh kg ZZDB * 7 (ka)

Jy(kb) }
Jo(ka)

If the TE,, mode is the only propagating waveguide
mode S*(ka, kd, e /d) may be rewritten as [8]

8sin’ (we/d)Jy (ka)(2+jx) (9)

S*(ka,kd.e/d)= T
10

where

=\ (kd)*~ x>

klO

, e 2 nme
4 y; ZnZz sin

! -~ —ZSinzz:?e
n?—(kd/z)> "
] €4 gy ]2 Xtk
T d1 2 Jy(ka)

and C=1.78107 - - -
From (8) and (9), we can rewrite Y, as

1 1

Yo = Z G RE +Y;, (10)
where
2
Zw=—k—f)—hd-n0,
R = (2/7)In(b/a)Jy(ka)sin(me/d)
U Jy(ka) Yy (kb)— Jy (kb)) Y,(ka)
and

R,= Jo(ka)sinfdf.
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Fig. 8. Equivalent circuit with TE,; mode terms 1solated.
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Fig. 9. Equivalent circuit for the mount shown in Fig. 5 for the case
where the TE, mode is the only propagating waveguide mode.

In a similar manner, one can show

1 1
Y, =——— - —+Y] 11
11 Zw(%'i‘_]x) R12 11 ( )
and
1 1
Y, =—F—————r 1Y, 12
2 Zw(%+jx) R% 2 (12)
where
27j -
Y, =————.!In(b -khcotkh —2 D!l
U mokhIn®(b/a) { (6/2) m2=1 "
ki Jo(kb) _
=5 Gy L ke Yak5) =y (k) Yo k)]
and
= +2 D

For the case being considered here, namely where the

TE,, mode is the only propagating waveguide mode, Y],
2. and Y;,, are purely susceptive.

Note the common term Z, (3 + jx) in (10), (11), and
(12). The 3 Z,, term arises because the two waveguide ports
(assumed matched in the analysis) are being fed in parallel
by the mount, while the jxZ (= jX) term corresponds to
the post reactance (cf., [14]).

Having recognized that the 1Z, term is related to the
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TE,, (propagating) mode, we can now isolate the wave-
guide ports from the circuit of Fig. 7 (using (10)-(12)) and
obtain the equivalent circuit shown in Fig. 8 where the
susceptances B,, B,, and B, are given by

JB, =1~ Y
JBy=Y;
JB.=Y5 — 1)y,

Because the circuit was deduced from an analysis which
had the two waveguide ports loaded identically (in fact,
perfectly matched), the ‘ post-thickness’ reactance ( X3 ) term
is included in the X term. It is a simple matter to extract

the X, term, and obtain the equivalent circuit for the
junction shown in Fig. 9, where

X,= X+%XB

and [14]
Xp=27-kyod-(a/d)’sin?(ne/d) Z,.
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Short Papers

Optimization of an Electrodynamic Basis for Determination
of the Resonant Frequencies of Microwave Cavities
Partially Filled with a Dielectric

JERZY KRUPKA

Abstract —In this paper, a method of optimization of an electrodynamic
basis is presented for determination of resonant frequencies of the micro-
wave cavities containing dielectric samples. It is shown that the use of the
suitable basis, consisting of several functions only, ensures a high accuracy
of calculation of these frequencies.

The presented method is useful for solving the boundary problem for the
elliptic partial differential equation if the considered region has a regular
boundary and is filled with inhomogeneous medium,

I. THEORY

It is often necessary in practice to determine frequencies of the
microwave resonant cavity in relation to the permittivity of the
sample which fills this cavity. As it is known, this problem can be
reduced to determination of the eigenvalues of the following
boundary problem:

{L¢=jwM¢ )

AXE=0onS

L; 0 wvx M= €0k, 0 _E
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¢, is the relative complex pemﬁttivity inside the cavity, E, H are

where
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the electric and magnetic fields inside the cav1ty, and S is the
surface of the cavity.

Eigenvalues w of this problem can be accurately calculated if
the sample fills completely two of the cavity dimensions. In other
cases, approximation methods must be used. In the most accurate
of them the electromagnetic field is expanded into a series

¢ =L o9, )
1

where {a;} is the set of coefficients to be determined and {¢,} is
the set of basis functions (the electrodynamic basis). If the
electrodynamic basis is given, the well-known methods (e.g., the
Rayleigh—Ritz or the Galerkin methods [1], [2]) are employed to
calculate eigenvalues w and eigenvectors {a,}. The main problem
is how to find the best electrodynamic basis. Usually the basis
contains functions which are solutions of the boundary problem
(1) for the empty cavity. In this paper, the basis is formed by
functions which are solutions of the boundary problem (1) for the
cavity partially filled with a dielectric in a suitable manner. The
dielectric fills completely two cavity dimensions. The cavity with
such a filling is called the basis cavity.

The nature of such modification can be explained as follows.
‘We want to achieve the best similarity of distributions of electro-
magnetic fields in the basis cavity (Fig. 1(b)) and in the cavity
which fields we are looking for (Fig. 1(a)). In this particular case,
shown in Fig. 1(b), we can achieve that by changing ¢, and (or)
the radius 7.

Similar modification of an electrodynaniic basis was presented
for the first time in [4] for the rectangular cavity with a rectangu-
lar dielectric sample where the authors assumed that €, = Re(¢,)
= const. In this paper, generalizations are made by assuming any
¢, value and by optimization of the choice of particular basis
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